53 research outputs found

    A 2 epoch proper motion catalogue from the UKIDSS Large Area Survey

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe UKIDSS Large Area Survey (LAS) began in 2005, with the start of the UKIDSS program as a 7 year effort to survey roughly 4000 square degrees at high galactic latitudes in Y, J, H and K bands. The survey also included a significant quantity of 2-epoch J band observations, with epoch baselines ranging from 2 to 7 years. We present a proper motion catalogue for the 1500 square degrees of the 2 epoch LAS data, which includes some 800,000 sources with motions detected above the 5 sigma level. We developed a bespoke proper motion pipeline which applies a source-unique second order polynomial transformation to UKIDSS array coordinates of each source to counter potential local non-uniformity in the focal plane. Our catalogue agrees well with the proper motion data supplied in the current WFCAM Science Archive (WSA) DR9 catalogue where there is overlap, and in various optical catalogues, but it benefits from some improvements. One improvement is that we provide absolute proper motions, using LAS galaxies for the relative to absolute correction. Also, by using unique, local, 2nd order polynomial tranformations, as opposed to the linear transformations in the WSA, we correct better for any local distortions in the focal plane, not including the radial distortion that is removed by their pipeline

    The discovery of a T6.5 subdwarf

    Get PDF
    We report the discovery of ULAS J131610.28+075553.0, an sdT6.5 dwarf in the UKIDSS Large Area Survey 2 epoch proper motion catalogue. This object displays significant spectral peculiarity, with the largest yet seen deviations from T6 and T7 templates in the Y and K bands for this subtype. Its large, similar to 1 arcsec yr(-1), proper motion suggests a large tangential velocity of V-tan approximate to 240-340 km s(-1), if we assume its M-J lies within the typical range for T6.5 dwarfs. This makes it a candidate for membership of the Galactic halo population. However, other metal-poor T dwarfs exhibit significant under luminosity both in specific bands and bolometrically. As a result, it is likely that its velocity is somewhat smaller, and we conclude it is a likely thick disc or halo member. This object represents the only T dwarf earlier than T8 to be classified as a subdwarf, and is a significant addition to the currently small number of known unambiguously substellar subdwarfs.Peer reviewe

    Retrieval of atmospheric properties of cloudy L dwarfs

    Get PDF
    © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.We present the first results from applying the spectral inversion technique in the cloudy L dwarf regime. Our new framework provides a flexible approach to modelling cloud opacity which can be built incrementally as the data requires, and improves upon previous retrieval experiments in the brown dwarf regime by allowing for scattering in two stream radiative transfer. Our first application of the tool to two mid-L dwarfs is able to reproduce their near-infrared spectra far more closely than grid models. Our retrieved thermal, chemical, and cloud profiles allow us to estimate Teff=179625+23T_{\rm eff} = 1796^{+23}_{-25} K and logg=5.210.08+0.05\log g = 5.21^{+0.05}_{-0.08} for 2MASS J05002100+0330501 and for 2MASSW J2224438-015852 we find Teff=172319+18T_{\rm eff} = 1723^{+18}_{-19} K and logg=5.310.08+0.04\log g = 5.31^{+0.04}_{-0.08}, in close agreement with previous empirical estimates. Our best model for both objects includes an optically thick cloud deck which passes τcloud1\tau_{cloud} \geq 1 (looking down) at a pressure of around 5 bar. The temperature at this pressure is too high for silicate species to condense, and we argue that corundum and/or iron clouds are responsible for this cloud opacity. Our retrieved profiles are cooler at depth, and warmer at altitude than the forward grid models that we compare, and we argue that some form of heating mechanism may be at work in the upper atmospheres of these L dwarfs. We also identify anomalously high CO abundance in both targets, which does not correlate with the warmth of our upper atmospheres or our choice of cloud model, and find similarly anomalous alkali abundance for one of our targets. These anomalies may reflect unrecognised shortcomings in our retrieval model, or inaccuracies in our gas phase opacities.Peer reviewedFinal Accepted Versio

    Contamination and exclusion in the sigma Orionis young group

    Full text link
    We present radial velocities for 38 low-mass candidate members of the sigma Orionis young group. We have measured their radial velocities by cross-correlation of high resolution (R~6000) AF2/WYFFOS spectra of the gravity sensitive NaI doublet at 8183, 8195Angstroms. The total sample contained 117 objects of which 54 have sufficient signal-to-noise to detect NaI at an equivalent width of 3Angstroms, however we only detect NaI in 38 of these. This implies that very low-mass members of this young group display weaker NaI absorption than similarly aged objects in the Upper Scorpius OB association. We develop a technique to assess membership using radial velocities with a range of uncertainties that does not bias the selection when large uncertainties are present. The resulting membership probabilities are used to assess the issue of exclusion in photometric selections, and we find that very few members are likely to be excluded by such techniques. We also assess the level of contamination in the expected pre-main sequence region of colour-magnitude space brighter than I = 17. We find that contamination by non-members in the expected PMS region of the colour-magnitude diagram is small. We conclude that although radial velocity alone is insufficient to confirm membership, high signal-to-noise observations of the NaI doublet provide the opportunity to use the strength of NaI absorption in concert with radial velocities to asses membership down to the lowest masses, where Lithium absorption no longer distinguishes youth.Comment: 11 pages, MNRAS accepted. Online data available from: http://www.astro.ex.ac.uk/people/timn/Catalogues/service.htm

    A Comparative L-dwarf Sample Exploring the Interplay Between Atmospheric Assumptions and Data Properties

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/Comparisons of atmospheric retrievals can reveal powerful insights on the strengths and limitations of our data and modeling tools. In this paper, we examine a sample of 5 similar effective temperature (Teff) or spectral type L dwarfs to compare their pressure-temperature (P-T) profiles. Additionally, we explore the impact of an object's metallicity and the observations' signal-to-noise (SNR) on the parameters we can retrieve. We present the first atmospheric retrievals: 2MASS J15261405++2043414, 2MASS J05395200-0059019, 2MASS J15394189-0520428, and GD 165B increasing the small but growing number of L-dwarfs retrieved. When compared to atmospheric retrievals of SDSS J141624.08+134826.7, a low-metallicity d/sdL7 primary in a wide L+T binary, we find similar Teff sources have similar P-T profiles with metallicity differences impacting the relative offset between their P-T profiles in the photosphere. We also find that for near-infrared spectra, when the SNR is 80\gtrsim80 we are in a regime where model uncertainties dominate over data measurement uncertainties. As such, SNR does not play a role in the retrieval's ability to distinguish between a cloud-free and cloudless model, but may impact the confidence of the retrieved parameters. Lastly, we also discuss how to break cloud model degeneracies and the impact of extraneous gases in a retrieval model.Peer reviewe

    Measuring ultracool properties from the UKIDSS Large Area Survey

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedWe discuss the properties and of ultracool and brown dwarfs that can be measured from current large area surveys and how fundamental parameters, such as the mass function and formation history can be measured, describing our own first measurement of the formation history in the sub-stellar regime using data from the UKIDSS Large Area Survey

    Properties of the T8.5 Dwarf Wolf 940 B

    Full text link
    We present 7.5-14.2um low-resolution spectroscopy, obtained with the Spitzer Infrared Spectrograph, of the T8.5 dwarf Wolf 940 B, which is a companion to an M4 dwarf with a projected separation of 400 AU. We combine these data with previously published near-infrared spectroscopy and mid-infrared photometry, to produce the spectral energy distribution for the very low-temperature T dwarf. We use atmospheric models to derive the bolometric correction and obtain a luminosity of log L/Lsun = -6.01 +/- 0.05. Evolutionary models are used with the luminosity to constrain the values of effective temperature (T_eff) and surface gravity, and hence mass and age for the T dwarf. We further restrict the allowed range of T_eff and gravity using age constraints implied by the M dwarf primary, and refine the physical properties of the T dwarf by comparison of the observed and modelled spectroscopy and photometry. This comparison indicates that Wolf 940 B has a metallicity within 0.2 dex of solar, as more extreme values give poor fits to the data - lower metallicity produces a poor fit at lambda > 2um while higher metallicity produces a poor fit at lambda < 2um. This is consistent with the independently derived value of [m/H] = +0.24 +/- 0.09 for the primary star, using the Johnson & Apps (2008) M_K:V-K relationship. We find that the T dwarf atmosphere is undergoing vigorous mixing, with an eddy diffusion coefficient K_zz of 10^4 to 10^6 cm^2 s^-1. We derive an effective temperature of 585 K to 625 K, and surface gravity log g = 4.83 to 5.22 (cm s^-2), for an age range of 3 Gyr to 10 Gyr, as implied by the kinematic and H alpha properties of the M dwarf primary. The lower gravity corresponds to the lower temperature and younger age for the system, and the higher value to the higher temperature and older age. The mass of the T dwarf is 24 M_Jupiter to 45 M_Jupiter for the younger to older age limit.Comment: 24 pages which include 5 Figures and 3 Tables. Accepted for publication in the Astrophysical Journal July 2 201

    A LOFAR mini-survey for low-frequency radio emission from the nearest brown dwarfs

    Get PDF
    We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5 +093347, WISEPC 150649.97+702736.0, and WISEPA J174124.26+255319.5.We have placed robust 3s upper limits on the flux density in the 111 – 169 MHz frequency range for these targets: WISE 1506: &lt; 0:72 mJy; WISE 1741: &lt; 0:87 mJy; SIMP 0136: &lt; 0:66 mJy. At 8 hours of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources

    Spitzer Mid-Infrared Photometry of 500 - 750 K Brown Dwarfs

    Full text link
    Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is critical for understanding the cold population of brown dwarfs now being found, objects which have more in common with planets than stars. As effective temperature (T_eff) drops from 800 K to 400 K, the fraction of flux emitted beyond 3 microns increases rapidly, from about 40% to >75%. This rapid increase makes a color like H-[4.5] a very sensitive temperature indicator, and it can be combined with a gravity- and metallicity-sensitive color like H-K to constrain all three of these fundamental properties, which in turn gives us mass and age for these slowly cooling objects. Determination of mid-infrared color trends also allows better exploitation of the WISE mission by the community. We use new Spitzer Cycle 6 IRAC photometry, together with published data, to present trends of color with type for L0 to T10 dwarfs. We also use the atmospheric and evolutionary models of Saumon & Marley to investigate the masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and T_eff ~ 500 K to 750 K.Comment: To be published in the on-line version of the Proceedings of Cool Stars 16 (ASP Conference Series). This is an updated version of Leggett et al. 2010 ApJ 710 1627; a photometry compilation is available at http://www.gemini.edu/staff/slegget
    corecore